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Introduction
Risk scores for the prediction of health outcomes have become 
useful and indispensable tools for clinical diagnosis. Most of 
these risk prediction tools are developed to predict outcomes 
for a specific condition or population and therefore have limited 
usefulness outside the scope of their intended target. Some, for 
example, focus on prediction of risk for particular conditions, 
eg, cardiovascular disease (Framingham Risk Score,1 Reyn-
olds Risk Score,2 QRISK2,3 etc), kidney disease (QKidney4), 
diabetes (ADA Diabetes Questionnaires5), and liver disease 
(MELD,6 RWIc

7). Others focus on prediction of health out-
comes for specific cohorts, eg, pediatric patients (PRISM) and 
intensive care patients (APACHE,8 SAPS II9).

Recent work10,11 has led to the development of risk scores 
with a more general scope of applicability. These are primarily 
intended to predict all-cause mortality for the general popula-
tion, as opposed to specific cohorts. One such instrument is 
the Intermountain Risk Score (IMRS).11 The IMRS includes 
test results from the complete blood count (CBC) and the 

basic metabolic profile (BMP), a panel of tests for assessing 
metabolic health. It also includes age in its risk model, which 
is known to be perhaps the strongest predictor of mortality. 
Therefore it is possible that the predictive power of this risk-
assessment tool may, in large part, be due to the inclusion of 
age as a component of the risk model.

We have developed a statistical tool for producing a holis-
tic measure of overall health. This health status metric (HSM) 
covers a wider range of tests than the IMRS. It includes 
results from the CBC, the lipid panel, and the comprehensive 
metabolic panel (CMP). The latter is an expanded version of 
the basic metabolic panel, which includes tests of liver func-
tion and provides a broader and more extensive assessment of 
the body’s chemical balance and metabolism. The lipid panel 
provides, among other things, assessment of cardiac risk, 
which is one of the most prevalent causes of mortality in the 
United States.12 In addition, HSM also includes serum bio-
markers such as hemoglobin A1c (a measure of blood glucose 
concentration), phosphorus, and C-reactive protein, which are 
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known to be prognostic indicators of multiple health condi-
tions.13–16 The HSM also does not use demographic risk pre-
dictors (instead, adjusting for them) and, with the exception of 
blood pressure, is composed entirely of serum biomarkers from 
common laboratory tests. And with just serum biomarkers, 
this index demonstrates strong predictive ability for all-cause 
mortality and multiple endpoint-specific causes of mortality 
(liver disease, kidney disease, diabetes).

This makes it potentially useful as a tool for prediction of 
general risk (with mortality as an endpoint). The HSM also 
correlates strongly with current health status as assessed by 
self-rated health, concurrent chronic conditions, and recent 
hospital utilization. It could therefore be used also as a holis-
tic measure of current health status. Because of the HSM’s 
utilization of a wide range of biomarkers spanning multiple 
organ systems, it may serve as a particularly effective clinical 
tool for early identification of at-risk individuals who may be 
asymptomatic at the time of measurement.

Methods
Data source and risk score components. The HSM was 

developed using the National Health and Nutrition Exami-
nation Survey (NHANES) 1999–2002 dataset (n = 3406)17 
and validated using the NHANES 2003–2008 (n = 4670)18 
and NHANES III 1988–1994 (n = 10592)19 datasets. Survival 
data used to develop and test the HSM was obtained from the 
NHANES 1999–2002 and NHANES III Linked Mortality 
Files. These files are the result of efforts by the NCHS to 
conduct a mortality linkage of NHANES data to death cer-
tificate data found in the National Death Index (NDI). These 
files provide information about the death status and survival 
times (up to December 31, 2006) of NHANES 1999–2002 
and NHANES III participants. In addition, information 
about the underlying cause of death (coded under variable 
UCOD_113) is available in the Linked Mortality Files. 
Questionnaire data from the continuous NHANES 2003–
2008 data was used to examine the relationship between the 
HSM and a number of self-reported variables: health status, 
hospital utilization, and diagnoses of diabetes, heart, kidney, 
and liver disease.

A total of 24 biomarkers were used to develop the HSM. 
With the exception of blood pressure, all the biomarkers used 
are blood/serum measurements, most of which come from the 
CMP, the lipid panel, and the CBC, batteries of blood tests 
that are commonly performed in clinical settings for diagnostic 
purposes. Below is a list of the biomarkers classified by type.

•	 Blood pressure
•	 Comprehensive metabolic panel

–	 Waste products [blood urea nitrogen (BUN), 
creatinine]

–	 Electrolytes (sodium, potassium, chloride, bicar-
bonate, calcium)

–	 Proteins (albumin, globulin)

–	 Enzymes [bilirubin, alkaline phosphatase (ALP), 
aspartate aminotransferase (AST), alanine amin-
otransferase (ALT)]

•	 Lipid panel
–	 Triglycerides, HDL : total cholesterol ratio

•	 Complete blood count
–	 White blood cell, red blood cell, and platelet count
–	 Hemoglobin, hematocrit

•	 Miscellaneous
–	 Hemoglobin A1c
–	 Phosphorus
–	 C-reactive protein

Standardization. Because the biomarkers are mea-
sured in a variety of units, they exist on different scales. 
In order to combine biomarkers of varying units into one 
unidimensional index, each biomarker’s range of measure-
ments is transformed into a relative hazard scale. Cox 
proportional hazards regression models with smoothing 
splines20 were used to plot the relationship between each 
biomarker’s levels and mortality (quantif ied as relative 
hazard) after adjusting for age, gender, race, income, and 
body mass index (BMI) (Fig.  1A–C). These plots allow 
the range of raw measurements for each biomarker to be 
mapped onto the relative hazard scale. This scale is then 
divided into 10 equal-sized intervals (strata), representing 
discrete levels of risk. The lowest stratum is assigned a 
value of 0 (indicating the lowest risk level) and the high-
est a value of 9 (highest risk level). This standardization 
procedure therefore facilitates the transformation of a set 
of raw biomarker measurements (with a variety of units) 
into a uniform, ordinal scale of 0–9. These standardized 
ordinal values have an intuitive appeal because higher 
values indicate less desirable biomarker levels and lower 
values indicate healthier biomarker levels. For example, a 
bicarbonate level of 10  mmol/L (or below) falls into the 
highest relative hazard stratum and thus gets assigned a 
standardized value of 9, representing the highest level of 
risk relative to the population baseline (Fig. 1A). Note that 
the training dataset (NHANES 1999–2002) was used to 
f it the smoothing spline-based Cox proportional hazards 
models described above. The population in this training 
dataset is large and diverse enough that the relative hazard 
plots generated may be considered robust approximations 
of the true relationship between each biomarker’s levels 
and mortality in the general population.

Health status metric construction. After all the bio-
markers have been standardized, the next step involves using 
the standardized values to construct the HSM. We follow 
the weighted quantile sum (WQS) methodology outlined by 
Carrico (2013)21 and Gennings (2013).22 The WQS method 
is a penalized regression technique for high-dimensional, 
multicollinear data. Briefly, it involves creating a weighted 
sum of all variables of interest (standardized onto the same 
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In Equation (1), ri denote the standardized (on the strati-
fied relative hazard scale) values for the biomarkers, and wi are 
the weights associated with each biomarker. The magnitude of 
the weight associated with a particular biomarker may be seen 
as an indicator of the strength of its association with mortal-
ity (in the presence of the other biomarkers and after adjust-
ing for demographic variables). This association is defined in a 
Weibull accelerated failure time model as follows:

	   
logT z w rk j j i i

ij
k= + + +∑∑   µ α β σ Ψ 	 (2)

In Equation (2), Tk denotes a random variable associ-
ated with the survival time of the kth individual, β is the 
unknown coefficient of the HSM composite, zj represent 
the demographic covariates (age, gender, race, etc), αj are  
the unknown coefficients of the zj, and µ and σ are param-
eters of the Weibull distribution. Details on how this model 
is fitted (and the weights estimated) will be discussed in the 
next section.

Because the standardized biomarker values range from 0 
to 9 and the weights add up to 1 and are constrained between 
0 and 1, the HSM has the range 0–9. Thus an individual with 
an HSM score equal to 0 is one who falls into the lowest risk 
(“healthiest”) stratum on all biomarker measurements, and 
an individual with an HSM score equal to 9 is one who falls 
within the highest risk stratum on all biomarkers measured. 
HSM scores greater than 0 but less than 9 indicate health risk 
levels falling between these two extremes, with higher scores 
indicating greater mortality risk.

Estimation of weights. To estimate the weights, the 
model given in Equation (2) is fitted with data from the 
NHANES 1999–2002 linked mortality files (training set). In 
Equation (2), Ψk is a random variable used to model the ran-
dom deviation of log Tk from its expected value according to 
the model.23 The equation can be solved to produce an expres-
sion for the realization ψk of this random variable:

	   
ψ µ α β σk k j j i i

ij
t z w r= − − −









∑∑log

The log-likelihood for the Weibull AFT model can then 
be expressed in terms of ψk:

	   
log ( log ) ,L ek k

k

k= − −∑δ ψ σ ψ

where δk is a censoring indicator for the kth individual 
(0 = assumed alive, 1 = deceased). This log-likelihood function 
is maximized to obtain estimates for the parameters:
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Figure 1. (A–C) Examples of relative hazard plots used for 
transformation of raw biomarker measurements onto the relative hazard 
scale. Each plot represents the multivariate adjusted, spline-smoothed 
relative hazard estimates as a function of biomarker level.

scale) and using the resulting composite as a single vari-
able in a regression model. The weights are unknown model 
parameters that are constrained to be between 0 and 1 and to 
sum to 1. Using the WQS approach, the HSM is constructed 
as follows:
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The maximization of this log-likelihood function (subject 
to the specified constraints) is essentially a constrained non-
linear optimization problem, which was solved numerically 
using the nonlinear programming procedure (PROC NLP24) 
in SAS 9.3 (SAS Institute, Cary, NC). The trust region algo-
rithm25,26 was used with initial values for the weights corre-
sponding to a uniform distribution across all 24 biomarkers 
used in the analysis (ie, wi = 1/24, for all i).

To guarantee stable estimates of the weights, a bootstrap 
aggregation (“bagging”) technique introduced in Carrico 
(2013)21 was used. A large number (B =  1000) of bootstrap 
samples (selected with replacement) were generated from the 
training data, and for each sample b the model defined above 
was fit to obtain a set of weight estimates w bi i

 ( ){ } =1

24
. The 

weights from all the bootstrap samples b = 1–B were averaged 
(Fig. 2). These weight estimates were then used to compute 
the HSM score for any individual with measurements avail-
able for all 24 biomarkers:

	   
HSM w r w

B
wi i

i
i i b

b

B
= =

= =
∑ ∑

1

24

1

1, ( )where  	 (3)

Validation. The NHANES III dataset was used as a test/
validation set to assess the predictive strength of the HSM 
composite. The population in this dataset shares no overlap 
with the NHANES 1999–2002 population (training set) used 
to generate the weights for the HSM. These weights were used 
to compute HSM scores for individuals in the NHANES III 
dataset. The standardization of the biomarker measurements 
for NHANES III individuals was carried out using the rela-
tive hazard functions computed for the NHANES 1999–2002 
population (examples of which are plotted in Figs.  1A–C), 
rather than recomputing new relative hazard functions spe-
cifically for the NHANES III dataset. The rationale behind 
reusing the NHANES 1999–2002 relative hazard functions 
is that the eventual goal of this project is to be able to com-
pute the HSM for individual patients without requiring any 
information about the distribution of biomarker measure-
ments in the populations they belong to. As discussed earlier, 
due to the large sample size and diversity of the NHANES 
1999–2002 dataset, the relative hazard functions computed 
using this population are robust estimates of the true underly-
ing biomarker–mortality relationships, and are thus suitable 
for use in the standardization of biomarker measurements of 
individuals in other datasets.

To test the predictive effect of HSM on survival time in 
the NHANES III dataset, two methods were utilized. In the 
first, a Weibull AFT (accelerated failure time) model was used 
with adjustment for the potentially confounding variables age, 

gender, race, BMI, and poverty income ratio (PIR). In this 
validation model, the statistical significance and sign of the 
HSM coefficient would be indicators of the strength and accu-
racy of the HSM variable as a predictor for survival time. In 
particular, since HSM is constructed in such a way that higher 
values signify worse survival outcomes, a negative and statis-
tically significant HSM coefficient in the validation model 
would imply that the HSM is a strong predictor of mortality 
in the test/validation dataset.

The second validation method involved the use of Har-
rell’s C-statistic.27 This statistic can be loosely thought of as 
the extension of the concept of AUC (area under the ROC 
curve) to right-censored survival outcomes. Let H be a predic-
tor for a survival outcome, which, for an individual i, assigns a 
score hi based on this individual’s covariates (xi). Further, let hi 
be such that higher values signify a worse outcome/prognosis. 
For a pair of individuals (i, j), define this pair as informative if 
it is possible to know which individual survived longer. Then 
Harrell’s C-statistic is the proportion of informative pairs 
exhibiting concordance between their prediction scores (hi, hj) 
and their observed survival times (Ti, Tj), where concordance 
is defined as the case wherein the individual with the higher 
(worse) score has the shorter survival time, and vice versa. Like 
AUC, Harrell’s C-statistic has a range 0–1, with 0.5 indicat-
ing a predictor with no discriminative power and higher val-
ues indicating better discriminative power.
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Figure 2. Bootstrap-averaged weights used to construct the HSM.
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As mentioned earlier, the NHANES III Linked Mor-
tality Files also contain information about the cause of death 
(stored in variable UCOD_113). This information was used to 
test the ability of the HSM to predict mortality arising from 
specific chronic illnesses such as cardiovascular disease (codes 
053–075), liver disease (codes 093–095), kidney disease (codes 
097–101), and diabetes (code 046). Logistic regression (with 
Firth’s bias correction28 for low-prevalence outcomes) was 
used to test the predictive power of HSM for mortality due 
to each of these conditions. Age, gender, race, PIR and BMI 
were adjusted for.

Questionnaire data from participants in NHANES 
between 2003 and 2008 was used to test the relationship 
between HSM score and the following self-reported vari-
ables: health status, hospital utilization, and diagnoses of 
diabetes, heart, kidney, and liver disease. Table  1  sum-
marizes the questionnaire items used. Note that the items 
corresponding to self-reported diagnosis of various heart 
conditions (items MCQ160B–MCQ160F) were condensed 
into one variable indicating whether or not a respondent had 
been notified by their doctor of at least one of these con-
ditions. For the questionnaire variables with binary (Yes/
No) responses, logistic regression was used to model each 
variable’s relationship with HSM while adjusting for age, 
gender, race, PIR, and BMI. Analysis of the relationship 
between HSM and questionnaire variables with more than 
two response categories was carried out using either linear or 
Poisson regression (see Table 1 for summary), depending on 
which provided a better fit to the model (as determined by 
the Akaike information criterion).

Results
Figure  3  shows the distribution of HSM scores in the 
NHANES III test/validation population. The HSM demon-
strated strong predictive ability (P , 0.0001, βHSM

 negative) 
for all-cause mortality in this validation set. The Harrell’s 
C-measure for the HSM was 0.7.

Figures  4A–F shows a series of Kaplan–Meier curves 
(adjusted for age and gender) plotted for different HSM ranges. 

A log-rank test indicates significant difference (P , 0.0001) in 
survival trends among the strata.

The HSM also demonstrated high predictive validity for 
cause-specific mortality (Table 2). The cause-of-death analy-
ses indicated that a 1-unit increase in HSM increases risk of 
death from liver disease by a factor of ∼4, kidney disease by a 
factor of 2.3, and diabetes by a factor of 2.2.

The analysis of items in the NHANES 2003–2008 
questionnaire data reveals a robust association between an 
individual’s HSM score and his/her current health status 
as assessed by self-rated health, self-reported hospital uti-
lization (in the months prior to NHANES participation), 
and the following self-reported physician-diagnosed health 
conditions: heart disease, liver disease, kidney disease, and 
diabetes (Table  3). The results indicate that higher HSM 
scores are associated with lower self-rated health and more 
frequent hospital visits. The odds ratio estimates suggest 
that a 1-unit increase in an individual’s HSM score is asso-
ciated with a 2.6-fold increase in the odds of having been 
diagnosed with diabetes, a 2.3-fold increase in the odds of 
having been diagnosed with a liver condition, a 4.5-fold 
increase in the odds of having been diagnosed with weak/
failing kidneys, and 2.3-fold increase in the odds of having 

Table 1. NHANES 2003–2008 selected questionnaire items and regression techniques used to model their relationship with HSM.

Variable name Questionnaire item No. of response categories Analysis technique

HUQ010 Self-rated health 5 Linear regression

HUQ050 No. of times healthcare received over past year 6 Poisson regression

HUQ080 No. of times over past year respondent was overnight  
hospital patient

6 Poisson regression

DIQ010 Doctor ever told respondent they have diabetes? 2 (Yes/No) Logistic regression

MCQ160L Doctor ever told respondent they have liver condition? 2 (Yes/No) Logistic regression

KIQ020 Doctor ever told respondent they have weak/failing 
kidneys?

2 (Yes/No) Logistic regression

MCQ160B–MCQ160F Doctor ever told respondent they have congestive  
heart failure, coronary heart disease, angina, heart  
attack, stroke

2 (Yes/No) Logistic regression
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Figure 3. Distribution of HSM in NHANES III population.
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Figure 4. (A) Age, 18–39; gender, female. (B) Age, 40–64; gender, female. (C) Age, 65; gender, female. (D) Age, 18–39; gender, male. (E) Age, 40–64; 
gender, male. (F) Age, 65; gender, male.

been diagnosed with one or more of the following cardio-
vascular diseases: congestive heart failure, coronary heart 
disease, angina, heart attack, or stroke. These results should 
be interpreted with caution. It is tempting to interpret them 
to mean that increased HSM in any individual is indicative 
of elevated risk of diabetes, liver, kidney, and cardiovascular 
disease. However, this would be an incorrect interpretation 
of the results since they are simply statistical associations 
observed at the population level. In other words, a particular 

individual with a relatively high HSM score may not neces-
sarily be at elevated risk for all the aforementioned condi-
tions. The specific conditions (if any) that an individual is at 
risk of due to relatively high HSM score would depend on 
their particular biomarker profile. The HSM score should be 
seen as a predictor of general mortality, not as a predictor of 
particular illnesses and health conditions.

Interpretation of HSM score. HSM scores can be 
directly translated into projected mortality risk at certain 
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In the current study, we applied stacking in order to 
improve prediction accuracy of the HSM. Like the bagging 
approach we originally used (described in the Methods sec-
tion), the first step of stacking involves the generation of a 
large number of bootstrap samples from the data. To explain 
subsequent steps of the stacking technique, we begin by repro-
ducing Equation (3) from the Methods section:

	   
HSM w r w

B
wi i

i
i i b

b

B
= =

= =
∑ ∑

1

24

1

1, ( )where  	 (3)

Plugging the second expression into the first, we can 
reformulate the HSM as

	   
HSM

B
H r H r w rb

b

B

b i b i
i

= =
= =

∑ ∑1

1 1

24

( ), ( ) ( )where  	 (4)

Hb(r) above is the particular HSM predictor generated 
from the bth bootstrap sample. From the reformulation above, 
it is clear that bagging essentially involves averaging the B 
HSM predictors Hb b

B( )⋅{ } =1
 that were generated from the B 

bootstrap samples. The resulting ensemble predictor is called 
a bagged predictor, which is more stable and often has better 
predictive performance than that of any of the individual 
predictors Hb(r). For insights into why bagging, in principle, 
increases predictive performance, see Ref. 29.

In the stacking technique, the ensemble predictor is 
created not by averaging the B predictors but by treating 
them as variables in a model/learning algorithm that esti-
mates the optimal weighting parameters to use to combine 
them. In stacking terminology, this model is referred to as a  
meta-model:

	   
log ( )T Hk b b

b

B
= +

=
∑η εrk

1

	 (5)

Here, {ηb} are unknown coefficients, which are estimated by 
the meta-model; the estimates are the values that best relate the 
variables Hb b

B( )⋅{ } =1
 to the targeted outcome/response. The end 

result would be a stacked predictor, ie, the stacking-based HSM:

Table 3. HSM relationship with self-reported hospital utilization and physician-diagnosed health conditions.

Questionnaire Item P-value Odds Ratio (95% CI)

Self-rated health ,0.0001 N/A

# of times healthcare received over past year ,0.0001 N/A

# of times over past year respondent was overnight hospital patient     0.003 N/A

Doctor ever told respondent they have Diabetes? ,0.0001 3.0 (2.3–4)

Doctor ever told respondent they have liver condition? ,0.0001 2.1 (1.5–3)

Doctor ever told respondent they have weak/failing kidneys? ,0.0001 4.7 (3.2–7)

Doctor ever told respondent they have congestive heart failure, coronary heart disease, Angina,  
heart attack, or stroke

,0.0001 2.2 (1.6–3)

Table 2. Predictive Validity of HSM (as measured by P-value and 
Odds Ratios [covariate-adjusted]) for death caused by a variety of 
chronic ailments.

Cause of Death P-value Odds Ratio (95% CI)

Cardiovascular disease     0.5 0.9 (0.8–1.1)

Liver disease ,0.0001 3.7 (2.3–6.0)

Kidney disease     0.004 2.2 (1.3–3.7)

Diabetes ,0.0001 2.3 (1.6–3.4)
 

time points in the future. The plots in Figures  5A and B 
illustrate the relationship between HSM score and prob-
ability of mortality 5 years and 10 years, respectively, after 
HSM score determination. These plots are adjusted for age 
group and gender, so they can be used to determine an indi-
vidual’s age- and gender-adjusted 5- and 10-year life expec-
tancy based on their present HSM score. Mortality risk at 
alternate time points can also be easily computed for specific 
HSM scores.

Predictive power of HSM score. We have demonstrated 
that the HSM successfully predicts mortality. Its predic-
tive power was assessed using the Harrell’s C-statistic and it 
was found to be of moderate prediction accuracy (C  =  0.7). 
In the construction of the HSM, bagging was used in order 
to improve the stability of the weight estimates. Bagging is 
a common data mining technique that is used for improving 
the performance of predictors.29 It falls under the umbrella of 
ensemble learning, an approach involving the generation and 
combination of a large and diverse set of models to produce 
an “aggregate” model with, among other properties, superior 
prediction accuracy. While bagging is a powerful technique 
in its own right, several other ensemble learning techniques 
exist, and we utilized a particular one (stacked generalization) 
in an attempt to improve the prediction accuracy of the HSM. 
Stacked generalization (“stacking”) was originally introduced 
and characterized in Wolpert,30 and its effectiveness was dem-
onstrated on a neural network. The first documented use of 
the technique in statistical literature is in Breiman,31,33 where 
it was applied to combining regression trees and ridge regres-
sion predictors.
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The meta-model defined in Equation (5) is merely for 
instructive purposes and is actually a somewhat naïve for-
mulation of stacked generalization. In practice, the model 
as defined in its current form will be ineffective for a num-
ber of reasons, the key one being that since the predictors 
Hb(⋅) were all constructed from bootstrap samples obtained 

from the same data, it is reasonable to expect significant 
correlation among them. Standard regression models such 
as the one in Equation (5) generally handle multicollinear-
ity poorly. There are a number of well-known modeling 
techniques for handling multicollinearity (see Bello32 for a 
discussion of the application of these techniques to stacked 
generalization). But in the present study, we compared only 
two: weighted quantile sum (WQS) regression, and partial 
least squares. We found that WQS performed better, and 
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Figure 5. (A) Age- and gender-adjusted relationship between HSM score and 5-year mortality risk. (B) Age- and gender-adjusted relationship between 
HSM score and 10-year mortality risk.
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increased the predictive accuracy (Harrell’s C) of the HSM 
to 0.75. Future studies will focus on improving the predic-
tion power even further.

Conclusion
Using biomarker and survival data, we have developed and 
validated a composite score that serves a dual purpose as a 
fairly comprehensive measure of overall health and a prog-
nostic tool capable of predicting mortality risk for the  
general population.

Validation analysis of the HSM demonstrated that it 
is both a reasonably accurate gage of current health status 
and a reliable predictor of life expectancy. Higher HSM 
scores tend to be linked with lower self-rated health, 
higher frequency of hospitalization, higher likelihood of 
chronic health conditions (at present and in the future), and 
decreased life expectancy.

Nearly all the biomarkers used in constructing the 
index can be obtained from common laboratory tests 
(CMP, lipid panel, CBC) performed on patients as part of 
the diagnosis process or routine checkups. The HSM pro-
vides a straightforward way to combine all these markers of 
various aspects of health into a single score, which serves 
as a numerical estimate of current overall health and future 
mortality risk.

Therefore the HSM could potentially be a useful tool in 
clinical settings for accurately quantifying mortality risk (life 
expectancy) in individuals with known health issues. HSM 
would provide clinicians who use it with an evidence-based/
data-driven assessment of general mortality risk that could be 
used to supplement or substitute the subjective assessments 
that are sometimes made in clinical practice. And unlike some 
risk scores that predict mortality only for individuals with a 
particular disease, the HSM is a general-purpose risk score 
that could be used to predict mortality for individuals with a 
wide range of conditions.

HSM could also be used as a measure for tracking a 
patient’s general health over time. Certain longitudinal clini-
cal studies that follow overall health status over time may 
benefit from the use of a validated, general-purpose risk score 
such as the HSM.

In healthcare quality assessment studies, HSM could 
be adapted for use as a metric for comparing patient overall 
health among different healthcare providers. As an example 
of such an application, the HSM could be used to obtain 

estimates of age- and gender-adjusted 5-year life expectancy 
for patients seen by individual or institutional healthcare 
providers. These estimates provide a way to make standard-
ized comparisons of patient health outcomes among multiple 
healthcare providers.

Study limitations. A limitation of the current method 
of computing HSM is the reliance on a large number of bio-
markers (24). While these biomarkers are routinely measured 
in clinical settings, individual patient health records might be 
missing one or more components. At this point in time, the 
computation of the HSM for a patient requires that all 24 bio-
markers be available. Future work will focus on developing an 
adaptive method for computing the HSM in instances when 
one or more of the biomarkers are missing.

Finally, while the HSM incorporates a wide range of 
biomarkers spanning multiple organ systems, this range is by 
no means exhaustive. Certain aspects of overall health (eg, 
reproductive health, mental health, gastrointestinal health, 
endocrine function) are not evaluated in a direct manner by 
the HSM.
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